The use of urban indicators in forecasting a real estate value with the use of deep neural network

Anna Bazan-Krzywoszańska, Michał Bereta

Abstract


Records of municipal planning documents directly affect the land use. In this way, the market price of the land is also shaped. Awareness of the economic and social consequences of adapting specific solutions is the primary argument that should condition the local policy in terms of spatial planning. The research results indicate that the network trained with attributes which do not describe a property value by its price was able to estimate it with acceptable and satisfactory results. The possibility to use artificial multilayer networks in spatial policy decision-making seems well founded. The research results show the relevance of the assumption that using them for modeling can be helpful in selecting the most advantageous variant of planning arrangements in a local law document which determines the land use and development, therefore impacts its value.


Keywords


planning analysis; local zoning plan; local policy; deep learning; deep neural networks; machine learning; artificial intelligence

Full Text:

PDF

References


Amakdouf H., El Mallahi M., Zouhri A., Tahiri A., Qjidaa H. (2018). Classification and Recognition of 3D Image of Charlier moments using a Multilayer Perceptron Architecture, Procedia Computer Science, Elsevier, 127, 226-235.

Bataineh M., Marler T. (2017). Neural network for regression problems with reduced training sets, Neural Networks, Elsevier, 95, 1-9.

Bazan-Krzywoszańska A., Mrówczyńska M. and Tront S.(2019). GIS technology, 3D models and mathematical models as a tool for assessing development capabilities of flood risk land to make arrangements of municipal planning documents, Journal of Ecological Engineering, 20 (1), 25-33. DOI: https://doi.org/10.12911/22998993/93866

Cymerman R. (2008). Planowanie przestrzenne dla rzeczoznawców majątkowych, zarządców oraz pośredników w obrocie nieruchomościami. Olsztyn: Wyd. Educaterra.

Cymerman R., Grabowski R. and Gwiaździńska M. (1999). Wartość nieruchomości jako czynnik kreujący zagospodarowanie przestrzenne, Wartość nieruchomości w gospodarowaniu przestrzenią, VII Konferencja Naukowa Towarzystwa Naukowego Nieruchomości, Wydawnictwo ART, Olsztyn (p. 22).

Ertuĝrul Ö.F. (2018). A novel type of activation function in artificial neural networks: Trained activation function, Neural Networks, Elsevier, 99, 148-157. DOI: https://doi.org/10.1016/j.neunet.2018.01.007

Garcia, N., Gamez, M. and Alfaro, E. (2008). ANN+GIS: An Automated System for Property Valuation. Neurocomputing, 71, 733–742. DOI:10.1016/j.neucom.2007.07.031

Goodfellow I., Bengio Y. and Courville A. (2016). Deep Learning, The MIT Press.

Hofmann M. & Klinkenberg R. (2013). RapidMiner. Data Mining Use Cases and Business Analytics Applications, Chapman & Hall/CRC Data Mining and Knowledge Discovery Series. CRC Press Taylor&Francis Group.

Jasiński T.& Bochenek A. (2016). Prognozowanie cen nieruchomości lokalowych za pomocą sztucznych sieci neuronowych, Studia i Prace WNEIZ US, 45 (1).

Juszczyk M., Leśniak A. and Zima K. (2018). ANN Based Approach for Estimation of Construction Costs of Sports Fields. Retrieved from

DOI: https://doi.org/10.1155/2018/7952434.

Łaguna T.M., Łaguna D. and Lendzin M. (2004). Identyfikacja skutków uchwalenia i realizacji miejscowego planu zagospodarowania przestrzennego. Ekonomiczne aspekty gospodarki przestrzennej, Łaguna T.M. (Ed.). Białystok: Wyd. Ekonomia i Środowisko.

Laskowska E. (2008). Zmiana przeznaczenia gruntu a jego wartość, Zeszyty Naukowe Szkoły Głównej Gospodarstwa Wiejskiego w Warszawie.Problemy Rolnictwa Światowego, 05 (20), 42-49.

Leśniak A., Juszczyk M. (2018). Prediction of site overhead costs with the use of artificial neural network based model, SicenceDirect, Archives of Civil and Mechanical Engineering, 18, 973-982.

Liu X., Deng Z. and Wang T. (2016). Real estate appraisal system based on GIS and BP neural network, Transactions of Nonferrous Metals Society of China, Elsevier, 21 (3), 626-639. DOI: https://doi.org/10.1016/S1003-6326(12)61652-5

Minli Z. and Yueran G.(2010) . Application of BP Neural Networks to the Real Estate Voluation, 2010 International Conference on Construction and Real Estate Management, Brisbane, Australia.

Mrówczyńska M. (2015). Studium nad doborem metod inteligencji numerycznej do rozwiązywania problemów z geodezji inżynieryjnej, Zielona Góra: Oficyna Wydawnicza Uniwersytetu Zielonogórskiego.

Mrówczyńska M., Łączak A., Bazan-Krzywoszańska A. and Skiba M.(2018). Improving energy efficiency with the risk of investment of reference urban development of Zielona Góra. Tehnički Vjestnik = Technical Gazette, 25(3). DOI: 10.17559/TV-20161212120336

Quinlan J.R. (1992). Learning with Continuous Classes, Proceedings of Australian Joint Conference on Artificial Intelligence, Hobart, 343-348.

Real Estate Management Act of 21 August 1997 (Off. J. of 2018 item 121 as amended)

Regulation of the Council of Ministers of 21 September 2004. on the property valuation and appraisal reports (Off. J. of 2004 no. 207 item 2109)

Szewrański S., Kazak J., Żmuda R. and Wawer R. (2017). Indicator-Based Assessment for Soil Resource Management in the Wrocław Larger Urban Zone of Poland. Polish Journal of Environmental Studies 26 (5), 2239-2248.

The act of 27 March 2003 on spatial planning and development (Off. J. of 2017 item 1073, 1566 as amended)

Wang X., Yan Y., Tang P., Bai X., Liu W. (2018). Revisiting multiple instance neural networks, Pattern Recognition, Elsevier, 74,15-24.

DOI: https://doi.org/10.1016/j.patcog.2017.08.026

Xu O., Deng K., Cuixia J., Sun F., Huang X. (2017). Composite quantile regression neural network with applications, Expert Systems With Applications, Elsevier, 76, 129-139. DOI: https://doi.org/10.1016/j.eswa.2017.01.054

Yeh I., Hsu T., (2018). Building real estate valuation models with comparative approach through case-based reasoning, Applied Soft Computing, Elsevier, 65, 260-271. DOI: https://doi.org/10.1016/j.asoc.2018.01.029

Zewdu T.W. (2007). Case-based reasoning and neural networks for real estate valuation, IASTED International Conference on Artificial Intelligence and Applications, Innsbruck, Austria, February 2007 (p. 84-89), ACTA Press Anaheim.

Zhang Z., Ma X., Yang Y.(2003). Bounds on the number of hidden neurons in three-layer binary neural networks, Neural Networks, Elsevier, 16 (7), 995-1002. DOI:10.1016/S0893-6080(03)00006-6




DOI: http://dx.doi.org/10.2478/rgg-2018-0011

Refbacks

  • There are currently no refbacks.


Copyright © Reports on Geodesy and Geoinformatics 2014-2018, e-mail: reports.geodesy@gmail.com
eISSN: 2391-8152