Verification and updating of the Database of Topographic Objects with geometric information about buildings by means of airborne laser scanning data

Malgorzata Mendela-Anzlik, Andrzej Borkowski

Abstract


Airborne laser scanning data (ALS) are used mainly for creation of precise digital elevation models. However, it appears that the informative potential stored in ALS data can be also used for updating spatial databases, including the Database of Topographic Objects (BDOT10k). Typically, geometric representations of buildings in the BDOT10k are equal to their entities in the Land and Property Register (EGiB). In this study ALS is considered as supporting data source.

The thresholding method of original ALS data with the use of the alpha shape algorithm, proposed in this paper, allows for extraction of points that represent horizontal cross section of building walls, leading to creation of vector, geometric models of buildings that can be then used for updating the BDOT10k. This method gives also the possibility of an easy verification of up-to-dateness of both the BDOT10k and the district EGiB databases within geometric information about buildings. For verification of the proposed methodology there have been used the classified ALS data acquired with a density of 4 points/m2. The accuracy assessment of the identified building outlines has been carried out by their comparison to the corresponding EGiB objects. The RMSE values for 78 buildings are from a few to tens of centimeters and the average value is about  0,5 m. At the same time for several objects there have been revealed huge geometric discrepancies. Further analyses have shown that these discrepancies could be resulted from incorrect representations of buildings in the EGiB database.


Keywords


airborne laser scanning; Database of Topographic Objects; alpha shape

Full Text:

pdf

References


Albers, B., Kada, M. & Wichmann, A. (2016). Automatic extraction and regularization of building outlines from airborne LiDAR point cloud. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLI(B3), 555-560

Bachofer, F. & Hochschild, V. (2015). A SVM-based approach to extract building footprints from Pléiades satellite imagery. The address: https://www.geotechrwanda2015.com/wp-content/uploads/2015/12/61_Felix-Bachofer.pdf

Borkowski A. & Jóźków, G. (2012). Accuracy Assessment of Building Models Created from Laser Scanning Data. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXIX-B3, 253-258, DOI: 10.5194/isprsarchives-XXXIX-B3-253-2012

Burdeos, M.D., Makinano-Santillan, M. & Amora A.M. (2015). Automated building footprints extraction form DTM and DSM in ArcGIS. The address: http://publications.ccgeo.info/Paper_2015_36thACRS_THP3-59.pdf

Cheng, L., Gong, J., Chen, X. & Han, P. (2008). Building boundary extraction from high resolution imagery and LiDAR data. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVII (B3b), 693-698

Edelsbrunner, H., Kirkpatrick, David G. & Seidel, R. (1983). On the shape of a set of points in the plane. IEEE Transactions on Information Theory 29 (4), 551–559

Fayed, M. & Mouftah H.T. (2009). Localised alpha-shape computations for boundary recognition in sensor network. Ad Hoc Networks. 7, 1259-1269, DOI:10.1016/j.adhoc.2008.12.001

Gotlib, D. (2013). Ogólna koncepcja, cel budowy i zakres informacyjny BDOT10k i BDOO, In: Olszewski R., Gotlib D. Rola bazy danych obiektów topograficznych

w tworzeniu infrastruktury informacji przestrzennej w Polsce. Warszawa. Główny Urząd Geodezji i Kartografii, pp. 51-57

Grigillo, D. & Kanjir, U. (2012). Urban object extraction from digital surface model and digital aerial images. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. I-3, 215-220

Hauglin, M. & Næsset, E. (2016). Detection and segmentation of small trees in the forest-tundra ecotone using airborne laser Canning. Remote Sensing, 8(407),

-15.

Jarząbek-Rychard, M. & Borkowski, A. (2016). 3D building reconstruction from ALS data using unambiguous decomposition into elementary structures. The ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 118, 1-12, DOI:10.1016/j.isprsjprs.2016.04.005

Matikainen, L., Hyyppä, J.A, Markelin, L., Kaartinen, H. & Kaartinen, H. (2010). Automatic detection of buildings and changes in buildings for updating of maps. Remote Sensing, Vol. 2, 1217-1248

Martin, K., Pengson, LTO, Bernandez, G., Sinnaco, MJ, Soriano, MRS & Pascua, CS. (2014). Building footprint extraction and tree removal in LiDAR-derived digital elevation models. The address:http://www.a-a-r-s.org/acrs/administrator/components/com_jresearch/files/publications/TU1-5-3.pdf

Mathworks.(2013).The address: http://www.mathworks.com/matlabcentral/fileexchange/28851-alpha-shapes, funkcja alphavol.m, autor: Jonas Lundgren (access: 20.12.2013)

Mendela, M. (2015). Metodyka aktualizacji Bazy Danych Obiektów Topograficznych

z wykorzystaniem danych lotniczego skaningu laserowego. The address: http://www.dbc.wroc.pl/dlibra/docmetadata?id=29887&from=publication

Nex, F., Rupnik, E. & Remondino, F. (2013). Building footprints extraction from oblique imagery. ISPRS Journal of Photogrammetry and Remote Sensing, II-3/W3, 61-66

Orthuber, E. & Avbelj, J. (2015). 3D building re construction from LiDAR point clouds by adaptive dual contouring. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. II-3/W4, 157-164

Pawłuszek, K. & Borkowski, A. (2016). Landslides identification using airborne laser scanning data derived topographic terrain attributes and support vector machine classification. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XLI-B8, 145-149, DOI:10.5194/isprsarchives-XLI-B8-145-2016

Poloprutský, Z., Cejpová, M. & Němcová, J. (2016). Non-destructive survey of archeological sites using airborne laser scanning and geophysical applications. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences,Vol. XLI-B5, 371-376

Rottensteiner, F. & Briese, C. (2002). A new method for building extraction in urban areas from high-resolution LiDAR data. The International Archives of Photogrammetry and Remote Sensing, XXXIV(3A), 295-301

Rottensteiner, F. (2008). Automated updating of building data bases from digital surface models and multi-spectral images: potential and limitations. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVII (B3a), 265-270

Tomljenovic, I., Höfle, B., Tiede, D. & Blaschke, T. (2015). Building extraction from airborne laser scanning data: an analysis of the state of the art. Remote Sensing, 7(4), 3826-3862

Viterbi, A.J. (1967). Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE Transactions on Information Theory,

Vol. 13 (2), 260–269.

Vosselman, G., Gorte, B.G.H. & Sithole, G. (2004). Change detection for updating medium scale maps using laser altimetry. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXV(B3), 207-212

Wang, J., Lehrbass, B. & Zeng, Ch. (2011). Urban mapping using LiDAR and relief-corrected colour-infrared aerial images. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXIV, 1-4

Wei, S. (2014). Delineation of building footprint outlines derived from vertical structures in airborne LiDAR point clouds. The address: https://www.itc.nl/library/papers_2014/msc/gfm/sun.pdf

Wei, S. (2008). Building boundary extraction based on lidar point clouds data. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVII (B3b), 157-162

Yuan, J. (2016). Automatic building extraction in aerial scenes using convolutional networks. arXiv:1602.06564

Zhang, K., Yan, J., Chen, Schu-Ch. (2006). Automatic construction of building footprints from airborne LiDAR data. IEEE Transactions on Geoscience and Remote Sensing, Vol.44 (9), 2523-2533

Zhao, J., You, S. & Huang, J. ( 2011). Rapid extraction and updating of road network from airborne LiDAR data. Proceedings of IEEE Applied Imagery Pattern Recognition Workshop (AIPR),1–7




DOI: http://dx.doi.org/10.1515/rgg-2017-0003

Refbacks

  • There are currently no refbacks.


Copyright © Reports on Geodesy and Geoinformatics 2014-2017, e-mail: reports.geodesy@gmail.com
eISSN: 2391-8152